Lecture 3: Macroeconomic Aggregates
 See Barro Ch. 2

Trevor Gallen

Spring, 2015

Motivation-I

- We want to know how everyone is doing
- This is a highly multidimensional object:
- How is Brendan's happiness? his income? mental health? employment?
- How is Lakisha's? her income? mental health? employment?
-
- How is Emily's? her income? mental health? employment?
- Want to encode this information concisely.
- (With some loss of information!)

Motivation-II

- The macroeconomic aggregates are how collapse information
- GDP: how is the "local" economy doing?
- GNP: how well are nationals in a country doing?
- Unemployment: is the labor market functioning well?
- Inflation: how much money do you have to have in 2015 to be just as happy as in 1985?
- Before we start, it's natural to ask...are they any good?
- Maybe you put stock in happiness surveys (N.B.: A priori, this is a terrible idea from my perspective!)

Motivation-II

- The macroeconomic aggregates are how collapse information
- GDP: how is the "local" economy doing?
- GNP: how well are nationals in a country doing?
- Unemployment: is the labor market functioning well?
- Inflation: how much money do you have to have in 2015 to be just as happy as in 1985? ${ }^{1}$
- Before we start, it's natural to ask...are they any good?
- Maybe you put stock in happiness surveys (N.B.: A priori, this is a terrible idea from my perspective!)
${ }^{1}$ Yes, this description is correct to a first-order approximation!

Stevenson \& Wolfers, 2008

Figure 1

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
- Why dollars? Aren't they meaningless?

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
- Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
- Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
- Government production

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
- Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
- Government production
- Durable goods

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
- Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
- Government production
- Durable goods
- How do we solve it?

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
- Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
- Government production
- Durable goods
- How do we solve it?
- Value government inputs at cost.

Nominal and Real GDP-I

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
- Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
- Government production
- Durable goods
- How do we solve it?
- Value government inputs at cost.
- Impute rental value of housing

Nominal and Real GDP-II

- If I sell you a used car, does it count? (Hotseat!)

Nominal and Real GDP-II

- If I sell you a used car, does it count? (Hotseat!)
- If we're trying to add up everything produced, we need to use prices

Nominal and Real GDP-II

- If I sell you a used car, does it count? (Hotseat!)
- If we're trying to add up everything produced, we need to use prices
- But prices change from year to year...aren't we comparing apples and oranges?

Example: Calculating Nominal GDP

- Take a set of N goods

$$
\operatorname{NomGDP}_{t}=\sum_{i=1}^{N} P_{i, t} Q_{i, t}
$$

Year	$P_{a, t}$	$P_{b, t}$	$Q_{a, t}$	$Q_{b, t}$	$G D P_{a, t}$	$G D P_{b, t}$	$G D P_{t}$
2010	$\$ 1$	$\$ 1$	1	1	$\$ 1$	$\$ 1$	$\$ 2$
2011	$\$ 1$	$\$ 2$	1	0.4	$\$ 1$	$\$ 0.8$	$\$ 1.8$
2012	$\$ 2$	$\$ 1$	0.8	1	$\$ 1.6$	$\$ 1$	$\$ 2.6$
2013	$\$ 2$	$\$ 2$	1	1	$\$ 2$	$\$ 2$	$\$ 4$
2014	$\$ 2$	$\$ 2$	0.5	0.5	$\$ 1$	$\$ 1$	$\$ 2$
Eq.	\cdot	\cdot	\cdot	\cdot	$P_{a, t} Q_{a, t}$	$P_{b, t} Q_{b, t}$	$G D P_{a, t}$

- Why is this troubling?
- Does $2010 \rightarrow 2012$ make sense?
- Does $2010 \rightarrow 2013$ make sense?
- Does $2010 \rightarrow 2014$ make sense?
- How do we fix it?

Example: Calculating GDP in Constant Dollars-I

We'll use 2010 prices (denoted by a bar):

$$
\operatorname{RealGDP}_{t}=\sum_{i=1}^{N} \bar{P}_{i} Q_{i, t}
$$

Year	$P_{a, t}$	$P_{b, t}$	$Q_{a, t}$	$Q_{b, t}$	$G D P_{a, t}$	$G D P_{b, t}$	$G D P_{t}$
2010	$\$ 1$	$\$ 1$	1	1	$\$ 1$	$\$ 1$	$\$ 2$
2011	\cdot	\cdot	1	0.4	$\$ 1$	$\$ 0.4$	$\$ 1.4$
2012	\cdot	\cdot	0.8	1	$\$ 0.8$	$\$ 1$	$\$ 1.8$
2013	\cdot	\cdot	1	1	$\$ 1$	$\$ 1$	$\$ 2$
2014	\cdot	\cdot	0.5	0.5	$\$ 0.5$	$\$ 0.5$	$\$ 1$
Eq.	\cdot	\cdot	\cdot	\cdot	$P_{a, 2010} Q_{a, t}$	$P_{b, 2010} Q_{b, t}$	$G D P_{a, t}$

- Does $2010 \rightarrow 2012$ make sense now?
- Does $2010 \rightarrow 2013$ make sense now?
- Does $2010 \rightarrow 2014$ make sense now?

Example: Calculating GDP in Constant Dollars-II

Or use 2014 prices:

Year	$P_{a, t}$	$P_{b, t}$	$Q_{a, t}$	$Q_{b, t}$	$G D P_{a, t}$	$G D P_{b, t}$	$G D P_{t}$
2010	\cdot	\cdot	1	1	$\$ 2$	$\$ 2$	$\$ 4$
2011	\cdot	\cdot	1	0.4	$\$ 2$	$\$ 0.8$	$\$ 2.4$
2012	\cdot	\cdot	0.8	1	$\$ 1.6$	$\$ 2$	$\$ 3.6$
2013	\cdot	\cdot	1	1	$\$ 2$	$\$ 2$	$\$ 4$
2014	$\$ 2$	$\$ 2$	0.5	0.5	$\$ 1$	$\$ 1$	$\$ 2$
Eq.	\cdot	\cdot	\cdot	\cdot	$P_{a, 2014} Q_{a, t}$	$P_{b, 2014} Q_{b, t}$	$G D P_{a, t}$

- Does $2010 \rightarrow 2012$ make sense now?
- Does $2010 \rightarrow 2013$ make sense now?
- Does $2010 \rightarrow 2014$ make sense now?

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP

1. Get average price between two years for each good:

$$
\bar{P}_{a}=\frac{P_{a, t}+P_{a, t+1}}{2}, \bar{P}_{b}=\frac{P_{b, t}+P_{b, t+1}}{2}
$$

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP

1. Get average price between two years for each good:

$$
\bar{P}_{a}=\frac{P_{a, t}+P_{a, t+1}}{2}, \bar{P}_{b}=\frac{P_{b, t}+P_{b, t+1}}{2}
$$

2. Find the new GDP component for each good: $Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}$ and $Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}$

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP

1. Get average price between two years for each good:

$$
\bar{P}_{a}=\frac{P_{a, t}+P_{a}, t+1}{2}, \bar{P}_{b}=\frac{P_{b}, t+P_{b, t+1}}{2}
$$

2. Find the new GDP component for each good: $Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}$ and $Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}$
3. Find the percentage difference between the two:

$$
\frac{Q_{a, t+1} \bar{P}_{\mathrm{a}}+Q_{b, t+1} \bar{P}_{b}}{Q_{\mathrm{a}, t} \bar{P}_{\mathrm{a}}+Q_{b, t} \bar{P}_{b}}
$$

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP

1. Get average price between two years for each good:

$$
\bar{P}_{a}=\frac{P_{a, t}+P_{a, t+1}}{2}, \bar{P}_{b}=\frac{P_{b}, t+P_{b, t+1}}{2}
$$

2. Find the new GDP component for each good: $Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}$ and $Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}$
3. Find the percentage difference between the two:
$\frac{Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}}{Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}}$
4. This gives the ratio of chain-weighted GDP, the growth, but doesn't give us a level

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP

1. Get average price between two years for each good:

$$
\bar{P}_{a}=\frac{P_{a, t}+P_{a}, t+1}{2}, \bar{P}_{b}=\frac{P_{b, t}+P_{b, t+1}}{2}
$$

2. Find the new GDP component for each good: $Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}$ and $Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}$
3. Find the percentage difference between the two:
$\frac{Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}}{Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}}$
4. This gives the ratio of chain-weighted GDP, the growth, but doesn't give us a level
5. Choose an arbitrary level

Chain-Weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP

1. Get average price between two years for each good:

$$
\bar{P}_{a}=\frac{P_{a, t}+P_{a}, t+1}{2}, \bar{P}_{b}=\frac{P_{b, t}+P_{b, t+1}}{2}
$$

2. Find the new GDP component for each good: $Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}$ and $Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}$
3. Find the percentage difference between the two:

$$
\frac{Q_{a, t+1} \bar{P}_{a}+Q_{b, t+1} \bar{P}_{b}}{Q_{a, t} \bar{P}_{a}+Q_{b, t} \bar{P}_{b}}
$$

4. This gives the ratio of chain-weighted GDP, the growth, but doesn't give us a level
5. Choose an arbitrary level

- Note: this is slightly simpler than what we actually do. See online notes for details.

Example: Chain-Weighted GDP

Year	$P_{a, t}$	$P_{b, t}$	$Q_{a, t}$	$Q_{b, t}$	$\frac{G D P_{t}}{G D P_{t-1}}$	$G D P_{t}$
2010	$\$ 1$	$\$ 1$	1	1	\cdot	100
2011	$\$ 1$	$\$ 2$	1	0.4	0.64	64
2012	$\$ 2$	$\$ 1$	0.8	1	1.29	82.6
2013	$\$ 2$	$\$ 2$	1	1	1.13	93.3
2014	$\$ 2$	$\$ 2$	0.5	0.5	0.5	46

- We now have the relative change in GDP between each period.
- Chain them together and choose an arbitrary starting point

Problems with GDP

- GDP isn't perfect.
- Doesn't measure changes in income distribution
- Doesn't measure non-market goods, such as childcare
- Doesn't measure leisure
- Nevertheless, it seems to be quite important and correlates with things we think are correlated with welfare (health, mental health, happiness, mortality)
- Recall our previous discussion of causality!

Measuring GDP

- GDP is measured three different ways
- First, recall that every dollar spent is a dollar "earned"
- All goods purchased by households ("expenditure")
- All goods produced by firms ("value added")
- All income earned by entities ("income")
- All three should add up to the same thing

Measuring GDP: Expenditure

$$
Y=C+I+G+X-I m
$$

- Consumption-purchases for consumption by HH's
- Nondurable goods
- Durable goods
- Investment-purchases of new capital goods by businesses (not financial instruments!)
- Government expenditure and gross investment-government purchases and "investment"
- Does include expenditures of all levels of government!
- Does not include all government spending!
- Net Exports-Value of what we send out minus what we bring in
- Note that things fall apart, depreciate: net domestic product, $N D P=G D P-$ depreciation.

Measuring GDP: Income Approach

- Rather than measuring final good consumption, could measure income
- For every dollar paid in for the final good, one is paid out
- In the end, all payments go to compensation of employees, proprietors, capital, or taxes: add it all up by recipient

Measuring GDP: Value-Added Approach

- Income approach measured income by group
- We could instead measure net income by sector/firm
- In the end, firm gets the difference between what you sold it for and the raw goods you purchased (the value added)

GDP, GDI, Value-Added

Table: Corn and Cornbread's Contribution to GDP

Step	Input Cost	Gross Revenue	Net Revenue
Farmer \rightarrow Miller	$\$ 0$	$\$ 0.10$	$\$ 0.10$
Miller \rightarrow Baker	$\$ 0.10$	$\$ 1$	$\$ 0.90$
Baker \rightarrow Supermarket	$\$ 1$	$\$ 10$	$\$ 9$
Supermarket \rightarrow Household	$\$ 10$	$\$ 11$	$\$ 1$

Two ways

$$
\underbrace{C+I+G+X-M}_{\text {Outflows }}=Y=\underbrace{w L+\pi+r K+T}_{\text {Inflows }}
$$

Failures of GDP

- What are some failures of GDP?

Failures of GDP

- What are some failures of GDP?
- No measures of distribution

Failures of GDP

- What are some failures of GDP?
- No measures of distribution
- Only what we measure (black market)

Failures of GDP

- What are some failures of GDP?
- No measures of distribution
- Only what we measure (black market)
- No measure of leisure time or household production

Failures of GDP

- What are some failures of GDP?
- No measures of distribution
- Only what we measure (black market)
- No measure of leisure time or household production
- No measure of nonmonetary production like environmental goods

Aside on Exponential Growth-I

- Let's say something is continuously exponentially growing:

$$
Y_{t}=\bar{Y} \exp (\gamma t)
$$

Then:

$$
\begin{aligned}
Y_{t} & =\bar{Y} \exp (\gamma t) \\
\log \left(Y_{t}\right) & =\log (\bar{Y} \exp (\gamma t)) \\
& =\log (\bar{Y})+\log (\exp (\gamma t)) \\
& =\log (\bar{Y})+\gamma \cdot \quad t
\end{aligned}
$$

- So logging an exponential object with growth rate ("frequency" γ) turns it into a linear function with slope γ.

Aside on Exponential Growth-I

- Let's say something is continuously exponentially growing:

$$
Y_{t}=\bar{Y} \exp (\gamma t)
$$

Then:

$$
\begin{aligned}
Y_{t} & =\bar{Y} \exp (\gamma t) \\
\log \left(Y_{t}\right) & =\log (\bar{Y} \exp (\gamma t)) \\
& =\log (\bar{Y})+\log (\exp (\gamma t)) \\
& =\underbrace{\log (\bar{Y})}_{\text {intercept }}+\underbrace{\gamma}_{\text {slope }} \cdot \underbrace{t}_{\text {variable }}
\end{aligned}
$$

- So logging an exponential object with growth rate ("frequency" γ) turns it into a linear function with slope γ.

Aside on Exponential Growth-II

- Let's say something is discretely exponentially growing:

$$
Y_{t}=Y_{t-1}(1+\gamma)
$$

Then:

$$
\begin{aligned}
Y_{t} & =Y_{t-1}(1+\gamma) \\
& =Y_{t-2}(1+\gamma)(1+\gamma) \\
& =Y_{t-2}(1+\gamma)^{2} \\
& =Y_{0}(1+\gamma)^{t} \\
\log \left(Y_{t}\right) & =\log \left(Y_{0}(1+\gamma)^{t}\right) \\
& =\log \left(Y_{0}\right)+\log \left((1+\gamma)^{t}\right) \\
& =\log \left(Y_{0}\right)+t \log ((1+\gamma)) \\
& \approx \log \left(Y_{0}\right)+\gamma \cdot \quad t
\end{aligned}
$$

- So logging an exponential object with growth rate ("frequency" γ) turns it into a linear function with slope γ.

Aside on Exponential Growth-II

- Let's say something is discretely exponentially growing:

$$
Y_{t}=Y_{t-1}(1+\gamma)
$$

Then:

$$
\begin{aligned}
Y_{t} & =Y_{t-1}(1+\gamma) \\
& =Y_{t-2}(1+\gamma)(1+\gamma) \\
& =Y_{t-2}(1+\gamma)^{2} \\
& =Y_{0}(1+\gamma)^{t} \\
\log \left(Y_{t}\right) & =\log \left(Y_{0}(1+\gamma)^{t}\right) \\
& =\log \left(Y_{0}\right)+\log \left((1+\gamma)^{t}\right) \\
& =\log \left(Y_{0}\right)+t \log ((1+\gamma)) \\
& \approx \underbrace{\log \left(Y_{0}\right)}_{\text {intercept }}+\underbrace{\gamma}_{\text {slope }} \cdot \underbrace{t}_{\text {variable }}
\end{aligned}
$$

- So logging an exponential object with growth rate ("frequency" γ) turns it into a linear function with slope γ.

Aside on Exponential Growth-III

- For those of you who are dubious, recall that when x is small, $1+x$ is near 1 .
- When \log is evaluated near 1 , it's nearly linear
- You can see the same thing from a first-order taylor expansion

U.S. GDP over Time: Historical Yearly Series

U.S. GDP over Time: NIPA Quarterly

U.S. GDP over Time: Growth Rate (Quarterly)

U.S. GDP over Time: Growth Rate (Quarterly)

Components of U.S. GDP over Time

Components of U.S. GDP over Time

Fractions of GDP by Category

Can you figure out which color is what category?

Components of U.S. GDP over Time: Legend

- Red is consumption: it's the biggest and is quite smooth
- Gray-blue is investment, and is quite volatile for its size
- Light blue is government consumption and investment...note the trend
- Light green is imports, they weren't produced in U.S. but were consumed so we take them out
- Dark green is exports, they were produced in U.S. but weren't consumed, so we keep them in
- Dark gray is a statistical error

Components of U.S. GDP over Time: Legend

- Red is consumption: it's the biggest and is quite smooth
- Gray-blue is investment, and is quite volatile for its size
- Light blue is government consumption and investment...note the trend (?)
- Light green is imports, they weren't produced in U.S. but were consumed so we take them out
- Dark green is exports, they were produced in U.S. but weren't consumed, so we keep them in
- Dark gray is a statistical error

INFLATION

- Inflation is measured by a basket of goods
- It's the flipside of the nominal vs. real GDP discussion above
- We have a few baskets to care about:
- Basket of goods and services produced domestically: GDP Deflator
- Basket of goods and services consumed by households: Consumer Price Index
- Basket of goods consumed by "producers" (no services, primarily raw materials and intermediate goods): Producer Price Index
- Let's see what they look like

Misstated Inflation

- It is generally accepted by economists that inflation is misstated

Misstated Inflation

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated

Misstated Inflation

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]

Misstated Inflation

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]
- Why?

Misstated Inflation

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]
-Why?
- Substitution bias

Misstated Inflation

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]
-Why?
- Substitution bias
- Quality improvements

Misstated Inflation

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]
- Why?
- Substitution bias
- Quality improvements
- Gallen's Theorem: Stated inflation must be too high, because Social Security is indexed to it.

Misstated Inflation

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]
- Why?
- Substitution bias
- Quality improvements
- Gallen's Theorem: Stated inflation must be too high, because Social Security is indexed to it.
- Proof by contradiction: I could find no photos of old people rioting in the streets

Misstated Inflation

- The BLS makes its price data available to researchers, rougher data to public

Misstated Inflation

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data

Misstated Inflation

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data
- Still others get their data from online

Misstated Inflation

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data
- Still others get their data from online
- General result: it's all fairly similar, some say it overstates, some it understates

Misstated Inflation

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data
- Still others get their data from online
- General result: it's all fairly similar, some say it overstates, some it understates
- In some instances, it suggests that inflation is misstated by about 15% per year (??)

Misstated Inflation

DAILY ONLINE PRICE INDEX

Misstated Inflation

ARGENTINA AGGREGATE INFLATION SERIES
 DAILY VALUE (DECEMBER '07 - PRESENT)

Misstated Inflation

ARGENTINA AGGREGATE INFLATION SERIES

ANNUAL RATE (DECEMBER '07 - PRESENT)

UnEMPLOYMENT

- U-1: persons unemployed 15 weeks or longer, as a percent of the civilian labor force
- U-2: job losers and persons who completed temporary jobs, as a percent of the civilian labor force
- U-3: total unemployed, as a percent of the civilian labor force
- U-4: total unemployed plus discouraged workers, as a percent of the civilian labor force plus discouraged workers
- U-5: total unemployed, plus discouraged workers, plus all other marginally attached workers, as a percent of the civilian labor force plus all marginally attached workers
- U-6: total unemployed, plus all marginally attached workers, plus total employed part time for economic reasons, as a percent of the civilian labor force plus all marginally attached workers

Unemployment Rates

