LECTURE 3: MACROECONOMIC AggregatesSee Barro Ch. 2

Trevor Gallen

Spring, 2015

MOTIVATION-I

- We want to know how everyone is doing
- This is a *highly* multidimensional object:
 - How is Brendan's happiness? his income? mental health? employment?
 - ▶ How is Lakisha's? her income? mental health? employment?

- How is Emily's? her income? mental health? employment?
- Want to encode this information concisely.
 - (With some loss of information!)

•

MOTIVATION-II

The macroeconomic aggregates are how collapse information

- GDP: how is the "local" economy doing?
- GNP: how well are nationals in a country doing?
- Unemployment: is the labor market functioning well?
- Inflation: how much money do you have to have in 2015 to be just as happy as in 1985?
- Before we start, it's natural to ask...are they any good?
- Maybe you put stock in happiness surveys (N.B.: A priori, this is a terrible idea from my perspective!)

MOTIVATION-II

- The macroeconomic aggregates are how collapse information
 - ▶ GDP: how is the "local" economy doing?
 - GNP: how well are nationals in a country doing?
 - Unemployment: is the labor market functioning well?
 - Inflation: how much money do you have to have in 2015 to be just as happy as in 1985?¹
 - Before we start, it's natural to ask...are they any good?
 - Maybe you put stock in happiness surveys (N.B.: A priori, this is a terrible idea from my perspective!)

¹Yes, this description is correct to a first-order approximation!

STEVENSON & WOLFERS, 2008

Figure 1

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
 - Why dollars? Aren't they meaningless?

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
 - Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
 - Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
 - Government production

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
 - Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
 - Government production
 - Durable goods

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
 - Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
 - Government production
 - Durable goods
- How do we solve it?

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
 - Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
 - Government production
 - Durable goods
- How do we solve it?
 - Value government inputs at cost.

- GDP is a flow
- Dollar amount of "final" goods and services produced per unit of time
 - Why dollars? Aren't they meaningless?
- What's the problem with counting up dollar value of everything produced?
 - Government production
 - Durable goods
- How do we solve it?
 - Value government inputs at cost.
 - Impute rental value of housing

If I sell you a used car, does it count? (Hotseat!)

- If I sell you a used car, does it count? (Hotseat!)
- If we're trying to add up everything produced, we need to use prices

- If I sell you a used car, does it count? (Hotseat!)
- If we're trying to add up everything produced, we need to use prices
- But prices change from year to year...aren't we comparing apples and oranges?

EXAMPLE: CALCULATING NOMINAL GDP

► Take a set of *N* goods

$$\mathsf{NomGDP}_t = \sum_{i=1}^N P_{i,t} Q_{i,t}$$

Year	$P_{a,t}$	$P_{b,t}$	$Q_{a,t}$	$Q_{b,t}$	$GDP_{a,t}$	$GDP_{b,t}$	GDP_t
2010	\$1	\$1	1	1	\$1	\$1	\$2
2011	\$1	\$2	1	0.4	\$1	\$0.8	\$1.8
2012	\$2	\$1	0.8	1	\$1.6	\$1	\$2.6
2013	\$2	\$2	1	1	\$2	\$2	\$4
2014	\$2	\$2	0.5	0.5	\$1	\$1	\$2
Eq.		•	•	•	$P_{a,t}Q_{a,t}$	$P_{b,t}Q_{b,t}$	$GDP_{a,t}$
							$+GDP_{b,t}$

- Why is this troubling?
 - Does $2010 \rightarrow 2012$ make sense?
 - Does $2010 \rightarrow 2013$ make sense?
 - Does $2010 \rightarrow 2014$ make sense?
- How do we fix it?

Example: Calculating GDP in Constant Dollars-I

We'll use 2010 prices (denoted by a bar):

$$\mathsf{RealGDP}_t = \sum_{i=1}^N \bar{P}_i Q_{i,t}$$

Year	$P_{a,t}$	$P_{b,t}$	$Q_{a,t}$	$Q_{b,t}$	$GDP_{a,t}$	$GDP_{b,t}$	GDP_t
2010	\$1	\$1	1	1	\$1	\$1	\$2
2011	•	•	1	0.4	\$1	\$0.4	\$1.4
2012	•	•	0.8	1	\$0.8	\$1	\$1.8
2013	•		1	1	\$1	\$1	\$2
2014	•		0.5	0.5	\$0.5	\$0.5	\$1
Eq.	•		•		$P_{a,2010}Q_{a,t}$	$P_{b,2010}Q_{b,t}$	$GDP_{a,t}$
							$+GDP_{h,t}$

- Does $2010 \rightarrow 2012$ make sense now?
- Does $2010 \rightarrow 2013$ make sense now?
- Does $2010 \rightarrow 2014$ make sense now?

EXAMPLE: CALCULATING GDP IN CONSTANT DOLLARS-II

Or use 2014 prices:

Year	$P_{a,t}$	$P_{b,t}$	$Q_{a,t}$	$Q_{b,t}$	$GDP_{a,t}$	$GDP_{b,t}$	GDP_t
2010	•	•	1	1	\$2	\$2	\$4
2011	•	•	1	0.4	\$2	\$0.8	\$2.4
2012	•		0.8	1	\$1.6	\$2	\$3.6
2013	•		1	1	\$2	\$2	\$4
2014	\$2	\$2	0.5	0.5	\$1	\$1	\$2
Eq.			•	•	$P_{a,2014}Q_{a,t}$	$P_{b,2014}Q_{b,t}$	$GDP_{a,t}$
							$+GDP_{b,t}$

- Does $2010 \rightarrow 2012$ make sense now?
- Does $2010 \rightarrow 2013$ make sense now?
- Does $2010 \rightarrow 2014$ make sense now?

What's the problem with using "constant dollars" GDP?

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- ▶ We can improve on this with chain-weighted GDP

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- ▶ We can improve on this with chain-weighted GDP

1. Get average price between two years for each good:

$$\bar{P}_{a} = \frac{P_{a,t}+P_{a,t+1}}{2}, \ \bar{P}_{b} = \frac{P_{b,t}+P_{b,t+1}}{2}$$

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- ► We can improve on this with chain-weighted GDP
 - 1. Get average price between two years for each good: $\bar{P}_a = \frac{P_{a,t}+P_{a,t+1}}{2}, \ \bar{P}_b = \frac{P_{b,t}+P_{b,t+1}}{2}$
 - 2. Find the new GDP component for each good: $Q_{a,t}\bar{P}_a + Q_{b,t}\bar{P}_b$ and $Q_{a,t+1}\bar{P}_a + Q_{b,t+1}\bar{P}_b$

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- ▶ We can improve on this with chain-weighted GDP
 - 1. Get average price between two years for each good: $\bar{P}_{a} = \frac{P_{a,t}+P_{a,t+1}}{2}, \ \bar{P}_{b} = \frac{P_{b,t}+P_{b,t+1}}{2}$
 - 2. Find the new GDP component for each good: $Q_{a,t}\bar{P}_a + Q_{b,t}\bar{P}_b$ and $Q_{a,t+1}\bar{P}_a + Q_{b,t+1}\bar{P}_b$
 - 3. Find the percentage difference between the two: $\frac{Q_{a,t+1}\bar{P}_{a}+Q_{b,t+1}\bar{P}_{b}}{Q_{a,t}\bar{P}_{a}+Q_{b,t}\bar{P}_{b}}$

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- ▶ We can improve on this with chain-weighted GDP
 - 1. Get average price between two years for each good: $\bar{P}_a = \frac{P_{a,t}+P_{a,t+1}}{2}, \ \bar{P}_b = \frac{P_{b,t}+P_{b,t+1}}{2}$
 - 2. Find the new GDP component for each good: $Q_{a,t}\bar{P}_a + Q_{b,t}\bar{P}_b$ and $Q_{a,t+1}\bar{P}_a + Q_{b,t+1}\bar{P}_b$
 - 3. Find the percentage difference between the two: $\frac{Q_{a,t+1}\bar{P}_{a}+Q_{b,t+1}\bar{P}_{b}}{Q_{a,t}\bar{P}_{a}+Q_{b,t}\bar{P}_{b}}$
 - 4. This gives the ratio of chain-weighted GDP, the growth, but doesn't give us a level

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- ▶ We can improve on this with chain-weighted GDP
 - 1. Get average price between two years for each good: $\bar{P}_{a} = \frac{P_{a,t}+P_{a,t+1}}{2}, \ \bar{P}_{b} = \frac{P_{b,t}+P_{b,t+1}}{2}$
 - 2. Find the new GDP component for each good: $Q_{a,t}\bar{P}_a + Q_{b,t}\bar{P}_b$ and $Q_{a,t+1}\bar{P}_a + Q_{b,t+1}\bar{P}_b$
 - 3. Find the percentage difference between the two: $\frac{Q_{a,t+1}\bar{P}_{a}+Q_{b,t+1}\bar{P}_{b}}{Q_{a,t}\bar{P}_{a}+Q_{b,t}\bar{P}_{b}}$
 - 4. This gives the ratio of chain-weighted GDP, the growth, but doesn't give us a level
 - 5. Choose an arbitrary level

- What's the problem with using "constant dollars" GDP?
- Choice of base year can be incredibly important
- We can improve on this with chain-weighted GDP
 - 1. Get average price between two years for each good: $\bar{P}_a = \frac{P_{a,t}+P_{a,t+1}}{2}, \ \bar{P}_b = \frac{P_{b,t}+P_{b,t+1}}{2}$
 - 2. Find the new GDP component for each good: $Q_{a,t}\bar{P}_a + Q_{b,t}\bar{P}_b$ and $Q_{a,t+1}\bar{P}_a + Q_{b,t+1}\bar{P}_b$
 - 3. Find the percentage difference between the two: $\frac{Q_{a,t+1}\bar{P}_{a}+Q_{b,t+1}\bar{P}_{b}}{Q_{a,t}\bar{P}_{a}+Q_{b,t}\bar{P}_{b}}$
 - 4. This gives the ratio of chain-weighted GDP, the growth, but doesn't give us a level
 - 5. Choose an arbitrary level
- Note: this is slightly simpler than what we actually do. See online notes for details.

EXAMPLE: CHAIN-WEIGHTED GDP

Year	$P_{a,t}$	$P_{b,t}$	$Q_{a,t}$	$Q_{b,t}$	$\frac{GDP_t}{GDP_{t-1}}$	GDP_t
2010	\$1	\$1	1	1	•	100
2011	\$1	\$2	1	0.4	0.64	64
2012	\$2	\$1	0.8	1	1.29	82.6
2013	\$2	\$2	1	1	1.13	93.3
2014	\$2	\$2	0.5	0.5	0.5	46

- ▶ We now have the relative change in GDP between each period.
- Chain them together and choose an arbitrary starting point

PROBLEMS WITH GDP

- ► GDP isn't perfect.
- Doesn't measure changes in income distribution
- Doesn't measure non-market goods, such as childcare
- Doesn't measure leisure
- Nevertheless, it seems to be quite important and correlates with things we think are correlated with welfare (health, mental health, happiness, mortality)
 - Recall our previous discussion of causality!

MEASURING GDP

- GDP is measured three different ways
- First, recall that every dollar spent is a dollar "earned"
 - All goods purchased by households ("expenditure")
 - All goods produced by firms ("value added")
 - All income earned by entities ("income")
- All three should add up to the same thing

MEASURING GDP: EXPENDITURE

Y = C + I + G + X - Im

- Consumption-purchases for consumption by HH's
 - Nondurable goods
 - Durable goods
- Investment-purchases of new capital goods by businesses (not financial instruments!)
- Government expenditure and gross investment-government purchases and "investment"
 - Does include expenditures of all levels of government!
 - Does not include all government spending!
- Net Exports-Value of what we send out minus what we bring in
- Note that things fall apart, depreciate: net domestic product, NDP = GDP-depreciation.

MEASURING GDP: INCOME APPROACH

- Rather than measuring final good consumption, could measure income
- ► For every dollar paid in for the final good, one is paid out
- In the end, all payments go to compensation of employees, proprietors, capital, or taxes: add it all up by recipient

MEASURING GDP: VALUE-ADDED APPROACH

- Income approach measured income by group
- ▶ We could instead measure net income by sector/firm
- In the end, firm gets the difference between what you sold it for and the raw goods you purchased (the value added)

GDP, GDI, VALUE-ADDED

Table: Corn and Cornbread's Contribution to GDP

Step	Input	Gross	Net
	Cost	Revenue	Revenue
Farmer→Miller	\$0	\$0.10	\$0.10
$Miller{ o}Baker$	\$0.10	\$1	\$0.90
$Baker{ o}Supermarket$	\$1	\$10	\$ 9
$Supermarket \to Household$	\$10	<u>\$11</u>	\$1

TWO WAYS

FAILURES OF GDP

What are some failures of GDP?

FAILURES OF GDP

- What are some failures of GDP?
 - No measures of distribution

FAILURES OF GDP

- What are some failures of GDP?
 - No measures of distribution
 - Only what we measure (black market)

Failures of GDP

- What are some failures of GDP?
 - No measures of distribution
 - Only what we measure (black market)
 - No measure of leisure time or household production

Failures of GDP

- What are some failures of GDP?
 - No measures of distribution
 - Only what we measure (black market)
 - No measure of leisure time or household production
 - No measure of nonmonetary production like environmental goods

ASIDE ON EXPONENTIAL GROWTH-I

Let's say something is continuously exponentially growing:

$$Y_t = ar{Y} \exp(\gamma t)$$

Then:

$$\begin{aligned} Y_t &= \bar{Y} \exp(\gamma t) \\ \log(Y_t) &= \log(\bar{Y} \exp(\gamma t)) \\ &= \log(\bar{Y}) + \log(\exp(\gamma t)) \\ &= \log(\bar{Y}) + \gamma \cdot t \end{aligned}$$

ASIDE ON EXPONENTIAL GROWTH-I

Let's say something is continuously exponentially growing:

$$Y_t = ar{Y} \exp(\gamma t)$$

Then:

$$\begin{split} Y_t &= \bar{Y} \exp(\gamma t) \\ \log(Y_t) &= \log(\bar{Y} \exp(\gamma t)) \\ &= \log(\bar{Y}) + \log(\exp(\gamma t)) \\ &= \underbrace{\log(\bar{Y})}_{\text{intercept}} + \underbrace{\gamma}_{\text{slope}} \cdot \underbrace{t}_{\text{variable}} \end{split}$$

ASIDE ON EXPONENTIAL GROWTH-II

Let's say something is discretely exponentially growing:

$$Y_t = Y_{t-1}(1+\gamma)$$

Then:

$$\begin{split} Y_t &= Y_{t-1}(1+\gamma) \\ &= Y_{t-2}(1+\gamma)(1+\gamma) \\ &= Y_{t-2}(1+\gamma)^2 \\ &= Y_0(1+\gamma)^t \\ \log(Y_t) &= \log(Y_0(1+\gamma)^t) \\ &= \log(Y_0) + \log((1+\gamma)^t) \\ &= \log(Y_0) + t \log((1+\gamma)) \\ &\approx \log(Y_0) + \gamma + t \end{split}$$

ASIDE ON EXPONENTIAL GROWTH-II

Let's say something is discretely exponentially growing:

$$Y_t = Y_{t-1}(1+\gamma)$$

Then:

$$\begin{aligned} Y_t &= Y_{t-1}(1+\gamma) \\ &= Y_{t-2}(1+\gamma)(1+\gamma) \\ &= Y_{t-2}(1+\gamma)^2 \\ &= Y_0(1+\gamma)^t \\ \log(Y_t) &= \log(Y_0(1+\gamma)^t) \\ &= \log(Y_0) + \log((1+\gamma)^t) \\ &= \log(Y_0) + t \log((1+\gamma)) \\ &\approx \underbrace{\log(Y_0)}_{\text{intercept}} + \underbrace{\gamma}_{\text{slope}} \cdot \underbrace{t}_{\text{variable}} \end{aligned}$$

ASIDE ON EXPONENTIAL GROWTH-III

- ► For those of you who are dubious, recall that when x is small, 1 + x is near 1.
- ▶ When log is evaluated near 1, it's nearly linear
- > You can see the same thing from a first-order taylor expansion

U.S. GDP OVER TIME: HISTORICAL YEARLY SERIES

U.S. GDP OVER TIME: NIPA QUARTERLY

U.S. GDP OVER TIME: GROWTH RATE (QUARTERLY)

U.S. GDP OVER TIME: GROWTH RATE (QUARTERLY)

Components of U.S. GDP over Time

Components of U.S. GDP over Time

Can you figure out which color is what category?

Components of U.S. GDP over Time: Legend

- Red is consumption: it's the biggest and is quite smooth
- Gray-blue is investment, and is quite volatile for its size
- Light blue is government consumption and investment...note the trend
- Light green is imports, they weren't produced in U.S. but were consumed so we take them out
- Dark green is exports, they were produced in U.S. but weren't consumed, so we keep them in
- Dark gray is a statistical error

Components of U.S. GDP over Time: Legend

- Red is consumption: it's the biggest and is quite smooth
- Gray-blue is investment, and is quite volatile for its size
- Light blue is government consumption and investment...note the trend (?)
- Light green is imports, they weren't produced in U.S. but were consumed so we take them out
- Dark green is exports, they were produced in U.S. but weren't consumed, so we keep them in
- Dark gray is a statistical error

INFLATION

- Inflation is measured by a basket of goods
- It's the flipside of the nominal vs. real GDP discussion above
- We have a few baskets to care about:
 - Basket of goods and services produced domestically: GDP Deflator
 - Basket of goods and services consumed by households: Consumer Price Index
 - Basket of goods consumed by "producers" (no services, primarily raw materials and intermediate goods): Producer Price Index
- Let's see what they look like

 It is generally accepted by economists that inflation is misstated

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- ▶ We typically think that measured inflation is too high [sic]

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- ▶ We typically think that measured inflation is *too high* [sic]
- Why?

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is *too high* [sic]
- ► Why?
 - Substitution bias

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is *too high* [sic]
- ► Why?
 - Substitution bias
 - Quality improvements

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]
- ► Why?
 - Substitution bias
 - Quality improvements
- Gallen's Theorem: Stated inflation *must* be too high, because Social Security is indexed to it.

- It is generally accepted by economists that inflation is misstated
- It is frequently asserted by non-economists that inflation is misstated
- We typically think that measured inflation is too high [sic]
- ► Why?
 - Substitution bias
 - Quality improvements
- Gallen's Theorem: Stated inflation *must* be too high, because Social Security is indexed to it.
- Proof by contradiction: I could find no photos of old people rioting in the streets

 The BLS makes its price data available to researchers, rougher data to public

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data
- Still others get their data from online

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data
- Still others get their data from online
- General result: it's all fairly similar, some say it overstates, some it understates

- The BLS makes its price data available to researchers, rougher data to public
- Others make their own price indicies from scanner data
- Still others get their data from online
- General result: it's all fairly similar, some say it overstates, some it understates
- In some instances, it suggests that inflation is misstated by about 15% per year (??)

DAILY ONLINE PRICE INDEX

ARGENTINA AGGREGATE INFLATION SERIES DAILY VALUE (DECEMBER '07 - PRESENT)

ARGENTINA AGGREGATE INFLATION SERIES ANNUAL RATE (DECEMBER '07 - PRESENT)

UNEMPLOYMENT

- U-1: persons unemployed 15 weeks or longer, as a percent of the civilian labor force
- U-2: job losers and persons who completed temporary jobs, as a percent of the civilian labor force
- ▶ U-3: total unemployed, as a percent of the civilian labor force
- U-4: total unemployed plus discouraged workers, as a percent of the civilian labor force plus discouraged workers
- U-5: total unemployed, plus discouraged workers, plus all other marginally attached workers, as a percent of the civilian labor force plus all marginally attached workers
- U-6: total unemployed, plus all marginally attached workers, plus total employed part time for economic reasons, as a percent of the civilian labor force plus all marginally attached workers
UNEMPLOYMENT RATES

